Advanced Topics In SMART Design and Data Analysis, Part 1

Module 5
General Objectives

• A taste of how data from a SMART can be analyzed to address various scientific questions
 o How to frame scientific questions
 o Experimental cells to be compared
 o Resources you can use for data analysis
 o Less details, more focus on making you feel comfortable with the general approach.
Outline

• Brief review of using end-of-study outcome to compare embedded AIs

• Learn how to use repeated outcome measures from a SMART to compare embedded AIs

• Review three types of scientific questions you can answer with repeated outcome measures
 o Difference in end-of-study outcome
 o Difference in Area Under the Curve (AUC)
 o Delayed effects

• Sample size considerations for planning SMARTs to compared embedded AIs with repeated outcome measures
Outline

• Brief review of using end-of-study outcome to compare embedded AIs

• Learn how to use repeated outcome measures from a SMART to compare embedded AIs

• Review three types of scientific questions you can answer with repeated outcome measures
 o Difference in end-of-study outcome
 o Difference in Area Under the Curve (AUC)
 o Delayed effects

• Sample size considerations for planning SMARTs to compare embedded AIs with repeated outcome measures
For simplicity assume response status was assessed at one time point (week 8)
ADHD SMART
PI: Pelham

4 embedded adaptive interventions

AI #1:
Start with MED;
if non-responder AUGMENT, else CONTINUE

AI #2:
Start with BMOD;
if non-responder AUGMENT, else CONTINUE

AI #3:
Start with MED;
if non-responder INTENSIFY, else CONTINUE

AI #4:
Start with BMOD;
if non-responder INTENSIFY, else CONTINUE
Recall Typical Primary Aim 3

Compare 2 embedded AIs

AI #1:
Start with MED;
if non-responder AUGMENT,
else CONTINUE

AI #2:
Start with BMOD;
if non-responder AUGMENT,
else CONTINUE
Comparison of Subgroups A+B vs. D+E
End of Study Primary Outcome Analysis Review

Step 1: Weight and replicate the data

Weighting
- Accounts for over/underrepresentation of responders or non-responders
- Because of the randomization scheme

Replicating
- Allows us to use standard software to do simultaneous estimation and comparison
- Because participants are consistent with more than one AI
End of Study Primary Outcome Analysis Review

Step 2: Select and fit a model, such as

\[E[Y|A_1, A_2] = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \beta_3 A_1 A_2 \]
Step 3: Estimate linear combinations of parameters to compare AI #1 and AI #2

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BMOD</td>
</tr>
<tr>
<td>-1</td>
<td>MED</td>
</tr>
<tr>
<td>1</td>
<td>INTENSIFY</td>
</tr>
<tr>
<td>-1</td>
<td>AUGMENT</td>
</tr>
</tbody>
</table>

$E[Y|A_1, A_2] = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \beta_3 A_1 A_2$
Step 3: Estimate linear combinations of parameters to compare AI #1 and AI #2

\[E[Y|A_1, A_2] = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \beta_3 A_1 A_2 \]

Mean Y under (MED, AUG) = \(\beta_0 + \beta_1(-1) + \beta_2(-1) + \beta_3(-1)(-1) \)
Step 3: Estimate linear combinations of parameters to compare AI #1 and AI #2

$$E[Y|A_1, A_2] = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \beta_3 A_1 A_2$$

Mean Y under (MED, AUG) = \(\beta_0 + \beta_1(-1) + \beta_2(-1) + \beta_3(-1)(-1)\)

Mean Y under (BMOD, AUG) = \(\beta_0 + \beta_1(1) + \beta_2(-1) + \beta_3(1)(-1)\)
End of Study Primary Outcome Analysis Review

Step 3: Estimate linear combinations of parameters to compare AI #1 and AI #2

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>BMOD</td>
<td>INTENSIFY</td>
</tr>
<tr>
<td>MED</td>
<td>AUGMENT</td>
</tr>
</tbody>
</table>

$E[Y|A_1, A_2] = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \beta_3 A_1 A_2$

The difference between (MED, AUG) and $(BMOD, AUG)$:

$(\beta_0 - \beta_1 - \beta_2 + \beta_3) - (\beta_0 + \beta_1 - \beta_2 - \beta_3) = -2\beta_1 + 2\beta_3$
Outline

• Brief review of using end-of-study outcome to compare embedded AIs

• **Learn how to use repeated outcome measures from a SMART to compare embedded AIs**

• Review three types of scientific questions you can answer with repeated outcome measures
 o Difference in end-of-study outcome
 o Difference in Area Under the Curve (AUC)
 o Delayed effects

• Sample size considerations for planning SMARTs to compare embedded AIs with repeated outcome measures
Repeated Outcome Measures From SMART

First-stage intervention

Response

MED

Non-Response

BMOD

Intermediate outcome

Response

Week 8

Beginning of school year Y1

A1

Y2 / R Status

End of school year Y3

Second-stage intervention

Continue

Augment

Intensify

Experimental Conditions

Subgroups

A

B

C

D

E

F

Non-Response

R

R

R
Longitudinal Outcome Analysis

Step #1: Weight and replicate the person-period data

Weighting
- Accounts for over/underrepresentation of responders or non-responders
- Because of the randomization scheme

Replicating
- Allows us to use standard software to do simultaneous estimation and comparison
- Because participants are consistent with more than one AI
Longitudinal Outcome Analysis

Step #1: Weight and replicate the person-period data

Fake data would look like this:

<table>
<thead>
<tr>
<th>ID</th>
<th>Month</th>
<th>ODD at baseline</th>
<th>Response Status</th>
<th>School Perf</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
Longitudinal Outcome Analysis

Step #1: Weight and replicate the person-period data

Fake data would look like this:

<table>
<thead>
<tr>
<th>ID</th>
<th>Month</th>
<th>ODD at baseline</th>
<th>Response Status</th>
<th>School Perf</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
Longitudinal Outcome Analysis

Step #2: Select and fit a model

\[E[Y|A_1, A_2] = \beta_0 + \beta_1 A_1 + \beta_2 A_2 + \beta_3 A_1 A_2 \]

- This model is for a single end-of-study outcome
- But we can extend for additional repeated outcome measures
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- The model we select should allow the outcome at each stage to be impacted only by intervention options that were offered prior to that stage.

```
Beginning of school year  | Week 8  | End of school year
Y1  A1  Y2 / R Status  A2  Y3
```
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- The model we select should allow the outcome at each stage to be impacted only by intervention options that were offered prior to that stage.
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- The model we select should allow the outcome at each stage to be impacted only by intervention options that were offered prior to that stage.
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- The model we select should allow the outcome at each stage to be impacted only by intervention options that were offered prior to that stage.
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- The model we select should allow the outcome at each stage to be impacted only by intervention options that were offered prior to that stage.
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- The model we select should allow the outcome at each stage to be impacted only by intervention options that were offered prior to that stage.
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- The model we select should allow the outcome at each stage to be impacted only by intervention options that were offered prior to that stage.
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- The model we select should allow the outcome at each stage to be impacted only by intervention options that were offered prior to that stage.

- Failing to properly account for the ordering of the measurement occasions relative to the intervention options can lead to bias (see Lu et al., 2016).
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- Piecewise (segmented) linear regression models can be useful in this setting.
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- Piecewise (segmented) linear regression models can be useful in this setting.
- What is a piecewise linear regression?
Step #2: Select and fit a model for the repeated outcome measurements

- Piecewise (segmented) linear regression models can be useful in this setting.

- What is a piecewise linear regression?
 - It’s just a regression
 - Where you can fit a separate line for different intervals
 - The boundary for the time intervals can form a transition point.
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- Piecewise (segmented) linear regression models can be useful in this setting.
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- Piecewise (segmented) linear regression models can be useful in this setting.
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- Piecewise (segmented) linear regression models can be useful in this setting.

Interval 2: Second-stage intervention

Beginning of school year | Week 8 | End of school year

Y1 A1 Y2 / R Status A2 Y3
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

- Piecewise (segmented) linear regression models can be useful in this setting.

Transition point

Interval 1: First-stage intervention
Interval 2: Second-stage intervention

Beginning of school year | Week 8 | End of school year

Y1 | A1 | Y2 / R Status | A2 | Y3
Longitudinal Outcome Analysis

Step #2: Select and fit a model for the repeated outcome measurements

• Piecewise (segmented) linear regression models can be useful in this setting.

• The linear trend in the outcome during the first stage can vary from second-stage and be impacted by different variables.
Longitudinal Outcome Analysis

Step #2: Select and fit a model

- To fit a separate line for each interval: meet S_1 and S_2
- S_1: indicator for the number of months spent so far in the first stage by time t,
- S_2: indicator for the number of months spent so far in the second stage by time t
Longitudinal Outcome Analysis

Step #2: Select and fit a model

- S_1: How many months spent so far in stage 1 by time t,
- S_2: How many months spent so far in stage 2 by time t

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S_2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Interval 1: First-stage intervention
Interval 2: Second-stage intervention

Beginning of school year | Week 8 | End of school year

Y1 | A1 | Y2 / R Status | A2 | Y3
Longitudinal Outcome Analysis

Step #2: Select and fit a model

- \(S_1 \): How many months spent so far in stage 1 by time \(t \),
- \(S_2 \): How many months spent so far in stage 2 by time \(t \)

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(S_2)</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Interval 1: First-stage intervention

Interval 2: Second-stage intervention

- **Beginning of school year**
- **Week 8**
- **End of school year**

Longitudinal Outcome Analysis

Step #2: Select and fit a model

- S_1: How many months spent so far in stage 1 by time t,
- S_2: How many months spent so far in stage 2 by time t

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S_2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Interval 1: First-stage intervention

Interval 2: Second-stage intervention

Beginning of school year | Week 8 | End of school year

Y1 ——— A1 ——— Y2 / R Status ——— A2 ——— Y3
Longitudinal Outcome Analysis

Step #2: Select and fit a model

- S_1: How many months spent so far in stage 1 by time t,
- S_2: How many months spent so far in stage 2 by time t

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S_2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Interval 1: First-stage intervention

Interval 2: Second-stage intervention

Beginning of school year | Week 8 | End of school year

Y1 | A1 | Y2 / R Status | A2 | Y3
Longitudinal Outcome Analysis

Step #2: Select and fit a model

The (fake) data would look like this:

<table>
<thead>
<tr>
<th>ID</th>
<th>O11</th>
<th>R</th>
<th>Month</th>
<th>Time on stage 1</th>
<th>Time on stage 2</th>
<th>School Perf</th>
<th>A1</th>
<th>A2</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>-1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>2</td>
</tr>
</tbody>
</table>
Longitudinal Outcome Analysis

Step #2: Select and fit a model

• Let’s ignore treatment assignment for now
• i.e., imagine everyone is on the same adaptive intervention

\[E[Y_t] = \beta_0 + \beta_1 S_1 + \beta_2 S_2 \]
Longitudinal Outcome Analysis

Step #2: Select and fit a model

\[
E[Y_t] = \beta_0 + \beta_1 S_1 + \beta_2 S_2
\]

\(\beta_0\): Expected SP at beginning of school year

\(\beta_1\): Stage 1 slope: *Expected monthly change in SP during stage 1*

\(\beta_2\): Stage 2 slope: *Expected monthly change in SP during stage 2*
Longitudinal Outcome Analysis

Step #2: Select and fit a model

- Now, let’s incorporate the treatment assignment in:

\[E[Y_t \mid A_1, A_2] = \beta_0 + \beta_1 S_1 + \beta_2 S_2 \]

- Slope at each stage should depend only on intervention options that have been assigned prior to that stage
Step #2: Select and fit a model

- Now, let’s consider incorporating the treatment assignment in:

 \[E[Y_t | A_1, A_2] = \beta_0 + \beta_1 S_1 + \beta_2 S_2 \]

- Recall \(\beta_0 \) is the expected SP at beginning of school year
- \(\beta_0 \) should not vary depending on \(A_1 \) or \(A_2 \)
Step #2: Select and fit a model

- Now, let’s consider incorporating the treatment assignment in:

\[E[Y_t \mid A_1, A_2] = \beta_0 + \beta_1 S_1 + \beta_2 S_2 \]

- Recall \(\beta_1 \) is the stage 1 slope
- \(\beta_1 \) can vary depending on \(A_1 \)
 - Replace \(\beta_1 \) by \((\beta_{10} + \beta_{11} A_1)\).

\[= \beta_0 + (\beta_{10} + \beta_{11} A_1)S_1 + \beta_2 S_2 \]
Step #2: Select and fit a model

- Now, let’s consider incorporating the treatment assignment in:
 \[E[Y_t \mid A_1, A_2] = \beta_0 + \beta_1 S_1 + \beta_2 S_2 \]

- Recall \(\beta_2 \) is the stage 2 slope
- \(\beta_2 \) can vary depending on \(A_1 \) and \(A_2 \)
 - Replace \(\beta_2 \) by \((\beta_{20} + \beta_{21} A_1 + \beta_{22} A_2 + \beta_{23} A_1 A_2) \)

 \[= \beta_0 + (\beta_{10} + \beta_{11} A_1) S_1 + (\beta_{20} + \beta_{21} A_1 + \beta_{22} A_2 + \beta_{23} A_1 A_2) S_2 \]
Step #3: Estimate linear combinations of parameters to compare AI #1 and AI #2

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Final example model:

$$E[Y_t|A_1, A_2] = \beta_0 + (\beta_{10} + \beta_{11}A_1)S_1 + (\beta_{20} + \beta_{21}A_1 + \beta_{22}A_2 + \beta_{23}A_1A_2)S_2$$
Longitudinal Outcome Analysis

Step #3: Estimate linear combinations of parameters to compare AI #1 and AI #2

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BMOD</td>
</tr>
<tr>
<td>-1</td>
<td>MED</td>
</tr>
<tr>
<td>1</td>
<td>INTENSIFY</td>
</tr>
<tr>
<td>-1</td>
<td>AUGMENT</td>
</tr>
</tbody>
</table>

\[
E [Y_t|A_1, A_2] = \beta_0 + (\beta_{10} + \beta_{11} A_1)S_1 + (\beta_{20} + \beta_{21} A_1 + \beta_{22} A_2 + \beta_{23} A_1 A_2)S_2
\]

Mean \(Y_3 \) under **AI #1 (MED, AUG)**

\[
= \beta_0 + (\beta_{10} + \beta_{11} \cdot -1) \cdot 2 + (\beta_{20} + \beta_{21} \cdot -1 + \beta_{22} \cdot -1 + \beta_{23} \cdot 1) \cdot 6
\]

\[
= \beta_0 + 2\beta_{10} - 2\beta_{11} + 6\beta_{20} - 6\beta_{21} - 6\beta_{22} + 6\beta_{23}
\]
Longitudinal Outcome Analysis

Step #3: Estimate linear combinations of parameters to compare AI #1 and AI #2

\[
E[Y_t|A_1, A_2] = \beta_0 + (\beta_{10} + \beta_{11}A_1)S_1 + (\beta_{20} + \beta_{21}A_1 + \beta_{22}A_2 + \beta_{23}A_1A_2)S_2
\]

Mean \(Y_3 \) under AI #2 (BMOD, AUG)

\[
= \beta_0 + (\beta_{10} + \beta_{11} \cdot 1) \cdot 2 + (\beta_{20} + \beta_{21} \cdot 1 + \beta_{22} \cdot -1 + \beta_{23} \cdot -1) \cdot 6
\]

\[
= \beta_0 + 2\beta_{10} + 2\beta_{11} + 6\beta_{20} + 6\beta_{21} - 6\beta_{22} - 6\beta_{23}
\]
Longitudinal Outcome Analysis

Step #3: Estimate linear combinations of parameters to compare AI #1 and AI #2

\[
E [Y_t|A_1, A_2] = \beta_0 + (\beta_{10} + \beta_{11} A_1)S_1 + (\beta_{20} + \beta_{21} A_1 + \beta_{22} A_2 + \beta_{23} A_1 A_2)S_2
\]

Difference in mean \(Y_3\) between AI#1 and AI#2

\[
= (\beta_0 + 2\beta_{10} - 2\beta_{11} + 6\beta_{20} - 6\beta_{21} - 6\beta_{22} + 6\beta_{23})
- (\beta_0 + 2\beta_{10} + 2\beta_{11} + 6\beta_{20} + 6\beta_{21} - 6\beta_{22} - 6\beta_{23})
= -4\beta_{11} - 12\beta_{21} + 12\beta_{23}
\]
Outline

• Brief review of using end-of-study outcome to compare embedded AIs

• Learn how to use repeated outcome measures from a SMART to compare embedded AIs

• **Review three types of scientific questions you can answer with repeated outcome measures**
 o Difference in end-of study outcome
 o Difference in Area Under the Curve (AUC)
 o Delayed effects

• Sample size considerations for planning SMARTs to compared embedded AIs with repeated outcome measures
Longitudinal Outcome Analysis

Area Under the Curve (AUC)

- Scientific Question: Is AI#1 better than AI#2 in terms of school performance averaged over the course of the intervention?
Longitudinal Outcome Analysis

Area Under the Curve (AUC)

- AI#1 AUC

This example is hypothetical
Longitudinal Outcome Analysis

Area Under the Curve (AUC)

- AI#1 AUC

This example is hypothetical
Longitudinal Outcome Analysis

Area Under the Curve (AUC)

- AI#2 AUC

This example is hypothetical
Longitudinal Outcome Analysis

Area Under the Curve (AUC)

- Difference in AUC AI#1-AI#2:

This example is hypothetical
Area Under the Curve (AUC)

- If you compare the two AIs in terms of end-of-school-year outcome, what would you conclude?
Longitudinal Outcome Analysis

Area Under the Curve (AUC)

- If you compare in terms of AUC...

This example is hypothetical
Longitudinal Outcome Analysis

Area Under the Curve (AUC)

- Consider when outcome values towards the middle (in the course of the school year) are considered more informative than are values that are at the end
Delayed Effects

- Scientific Question: Does the initial intervention options in AI #1 vs. AI #2 impact school performance differently before vs. after these AIs unfold?
 - before vs. after these AIs unfold → before vs. after second-stage options are introduced
Delayed Effects

- AI#1 & AI#2 lead to the same outcome at the end of school year
- But the process is different

This example is hypothetical
Delayed Effects

- Definition:
 - Difference between long-term effect and short-term effect
 - Difference between two differences

This example is hypothetical
Delayed Effects

• Difference between two differences

Long-term: Difference in mean Y_3 between AI#1 and AI#2

This example is hypothetical
Longitudinal Outcome Analysis

Delayed Effects

• Difference between two differences

Short-term: Difference in mean Y_2 between AI#1 and AI#2

This example is hypothetical
Longitudinal Outcome Analysis

Delayed Effects

- Difference between two differences

Long-term: Difference in mean Y_3 between **AI#1** and **AI#2**

- Short-term: Difference in mean Y_2 between **AI#1** and **AI#2**

This example is hypothetical
Delayed Effects

- Consider when there is scientific/practical rationale for positive or negative synergies between first and second stage options
Outline

• Brief review of using end-of-study outcome to compare embedded AIs

• Learn how to use repeated outcome measures from a SMART to compare embedded AIs

• Review three types of scientific questions you can answer with repeated outcome measures
 o Difference in end-of-study outcome
 o Difference in Area Under the Curve (AUC)
 o Delayed effects

• Sample size considerations for planning SMARTs to compared embedded AIs with repeated outcome measures
Longitudinal Outcome Sample Size for End-of-Study Comparisons

\[N = \frac{4(z_{1-\alpha/2} + z_{1-\beta})^2}{\delta^2} \times (1 - \rho^2) \times (2 - r) \]

\(\delta \) is the standardized effect size for the comparison

\(\rho \) is the (compound-symmetric) within-person correlation

\(r \) is the probability of response to first-stage treatment
Longitudinal Outcome Sample Size for End-of-Study Comparisons

40% response rate
\(\alpha = 0.05 \) (two-sided)
80% target power

<table>
<thead>
<tr>
<th>Std. Effect Size</th>
<th>(\rho = 0)</th>
<th>(\rho = 0.3)</th>
<th>(\rho = 0.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta = 0.3)</td>
<td>559</td>
<td>508</td>
<td>358</td>
</tr>
<tr>
<td>(\delta = 0.5)</td>
<td>201</td>
<td>183</td>
<td>129</td>
</tr>
</tbody>
</table>
Longitudinal Outcome Sample Size for End-of-Study Comparisons

\[N = \frac{4(\frac{z_{1-\alpha}}{2} + z_{1-\beta})^2}{\delta^2} \times (1 - \rho^2) \times (2 - r) \]

\(\delta \) is the standardized effect size for the comparison
\(\rho \) is the (compound-symmetric) within-person correlation
\(r \) is the probability of response to first-stage treatment
\[N = \frac{4(z_{1-\alpha/2} + z_{1-\beta})^2}{\delta^2} \times (2 - r) \]

\(\delta \) is the standardized effect size for the comparison

\(r \) is the probability of response to first-stage treatment
Additional Resources for Comparing Embedded AIs on a Longitudinal Outcome

R code for implementing the methodology
 • See John Dziak’s code here: http://d3lab-isr.com/resources/

Repeated measures variance estimation
 • Visit Nick Seewald’s poster

Random effects modeling
 • Visit Brook Luers’ poster

Visualizing data from a SMART to inform repeated measures mean and variance modeling
 • See Madison Stoms poster
Citations

